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The finite strip method is a useful tool for the determination of the buckling load factor
and natural frequency for a given cross-section of a member. This method has the
advantage of producing accurate results for a relatively coarse mesh when compared with
the finite element method. This paper demonstrates a procedure to improve the natural
frequency estimation and use it to give an accurate prediction for the error of the finite
strip solution.
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1. INTRODUCTION

Natural frequency and buckling analysis of thin plate structures is generally considered
to be either plate local effects or flexural, torsional, or flexural-torsional deformation of
the member. Plate local vibration analysis assumes that the line junctions between
intersecting plates remains straight, and the member vibration assumes that the
cross-section remains undistorted. The finite strip method [1] overcomes both of these
assumptions and produces quite accurate results as both local and member natural
frequency and buckling can occur simultaneously using the finite strip method. A
combination of local and member effects for buckling has been termed as distortional [2]
and can be similarly used for the natural frequency analysis of a structure. This paper
examines the errors associated with natural frequency analysis. The errors associated with
the finite strip buckling have been examined previously [3].

The finite strip method involves discretizing the structural membrane being examined
into a series of flat strips to represent the structure. See Figure 1. From these strips the
global elastic stiffness and mass matrices are created.

The natural frequency is given by the square root of the eigenvalue l in the eigen
equation (1):

([K]− l[M]){x}= {0}, (1)

where [K] and [M] are the global elastic stiffness and mass matrices respectively, and {x}
is the eigenvector that represents the displaced shape of the structure. The eigenvalue can
also be determined using the Rayleigh quotient shown in equation (2):

l=
{x}T[K]{x}
{x}T[M]{x} (2)

which is used later in this paper for the derivation of the improve eigenvalue.
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Figure 1. Discretization of a structural member into finite strips.

There is little work in the area of error estimation for the finite strip method. Error
estimation techniques for the finite element method such as those by Friberg et al. [4, 5]
and Cook [6, 7] have not generally been used for the finite strip method as they have only
limited success with the finite element method.

2. DERIVATION OF FINITE STRIP MATRICES

In order to improve the eigenvalue obtained from a finite strip analysis it is necessary
to briefly review the basic principles of the formulation of the local elastic stiffness and
mass matrices. The finite strip is separated into two types of deformation behaviour:
flexural and membrane deflections.

2.1.  

The flexural displacement has two degrees of freedom associated with each node, namely
the vertical, out-of-plane displacement and the rotation of the node. Along the length of
the strip the method assumes a sine curve for the displacement which corresponds to the
half wave length of the buckles (see Figure 2).

Across the strip the flexural displacement is a polynomial of order three as shown in
equation (3). This has four unknowns relating to the four degrees of freedom.

Nf = av1 + av2x+ av3x2 + av4x3. (3)

Combined with the sine curve displacement the shape function for the flexural component
of the finite strip is:

NF =Nf sin (pz/L). (4)

Figure 2. Flexural displacement for the finite strip.
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Figure 3. Membrane displacement for the finite strip.

The formulation of the flexural elastic stiffness matrix follows standard finite element
routines.

[KF ]=gA

[BF ]T[DF ][BF ] dA, (5)

where [BF ] is the strain matrix derived by the second differential of the shape function
corresponding to curvatures of the plate, and [DF ] is the materials properties matrix for
plate bending. The integration is over the surface area of the strip with dA=dx dz.

The flexural consistent mass matrix is:

[MF ]=gA

[NF ]Tr[NF ] dA, (6)

where [NF ] is the flexural shape function, and r is the density of the material.

2.2.  

The membrane displacement has two degrees of freedom associated with each node,
being the orthogonal displacements parallel to the strip in the line of the strip and across
the strip. Also, along the length of the strip the method assumes a sine curve for the
displacement in the x direction. In the z direction the deformation is at the ends of the
strip as opposed to the centre, hence a cosine curve is used for this deformation along the
length of the strip (refer to Figure 3).

Across the strip the membrane displacements u and w are independent; as a result there
is a separate polynomial function of order one to represent their individual displacements.

Nm,u = au1 + au2x, Nm,w = aw1 + aw2x. (7, 8)

The addition of the trigonometric functions for the displacement along the length of the
member results in two shape functions:

NM,u =Nm,u sin (pz/L), NM,w =Nm,w (L/p) cos (pz/L). (9, 10)

The formulation of the membrane elastic stiffness matrix again follows the standard finite
element routines.

[KM ]=gA

[BM ]T[DM ][BM ] dA, (11)
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where [BM ] is the membrane strain matrix derived from the first differential of both of the
membrane shape functions and [DM ] is the materials properties matrix for plane-stress
membrane behaviour. The membrane consistent mass matrix is:

[MM ]=gA

[NM ]Tr[NM ] dA, (12)

where [NM ] is a combination of the x- and z-axis deformation shape functions.
The flexural and membrane elastic stiffness and mass matrices undergo the necessary

transformations and are assembled into the global elastic stiffness and mass matrices of
equation (1).

3. EIGENVALUE IMPROVEMENT

The results of a finite strip analysis, like the finite element method, can be improved by
refining the mesh used in the analysis model. This requires extra work and can become
time consuming for the resolving of the problem. Based on previous work by the authors
[3, 8, 9] the eigenvalue for the finite strip method can be improved without resolving the
refined model. Each element in the original model is examined and individually subdivided.
The new eigenvector for this refined mesh is derived from the original eigenvector on the
element and surrounding elements. These surrounding elements with the central elements
are called the patch of elements.

A polynomial higher than the original finite element shape functions is derived using
the eigenvector displacements for the nodes in the patch. A higher order polynomial is used
to produce a more accurate deformed shape over the finite strip patch of element. There
are principally three shape functions for the finite strip element, one for the flexural
displacement and two for the membrane displacement, as shown by equations (4), (9) and
(10).

Only elements in the same line may be considered in the patch as the polynomial is
calculated in a linear axis form. The structure behaves quite differently across bends in
the cross-section due to the generally large difference in values between the flexural and
membrane stiffness of the plate. For a patch using these elements there is either a three
element patch for the typical patch in a straight section of elements or two elements in
a patch for elements at a boundary or a corner in the structure as shown in Figure 4.

The vertical displacement shape function NF related to the flexural displacement of the
finite strip has a polynomial of order three. The two membrane displacements NM,u and
NM,w have a polynomial of order one. For the finite strip method a patch of elements may
consist of either two or three elements. Figure 5 shows the number of degrees of freedom
associated with the patch possibilities and shape functions. The order of the polynomial
used for the patch displacement function is based upon the number of degrees of freedom
in the patch. As there are more nodes in the patch than the original element, the order

Figure 4. Definition of patches for various locations.
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Figure 5. Patch displacements for the finite strip.

of the polynomial will be larger than the original finite strip element shape function. See
Figure 6.

A new eigenvector {x*} can be derived for the sub-elements of the central element of
the patch using the patch displacement function. The new eigenvector can be used in the
Rayleigh quotient of equation (2) to calculate the new eigenvalue l*. The Rayleigh
quotient can be calculated by summing the number and denominator terms for individual
elements, and hence this process can be performed at an individual element level.

Although the new eigenvector is derived from a higher order function than the original
finite strip solution, the associated improved eigenvalue is not guaranteed to be exact and
is best used as an error measure for the original results. The finite element analysis error
can be calculated knowing the exact eigenvalue lEX as:

o=(l− lEX )/lEX . (13)

Using the improved eigenvalue the error measure can be calculated as:

o*= (l− l*)/l*. (14)

If the improved eigenvalue is more accurate than the original eigenvalue obtained from
the finite strip analysis then the error measure will be quite accurate.

4. EXTRAPOLATION OF EXACT SOLUTION

The calculation of the exact natural frequency cannot be achieved with a finite number
of strips in the analysis due to the incapacity of the polynomial shape functions to represent
perfectly the complex deformed shape. However, as the mesh is refined the finite strip
solution will approach the exact solution as a limit. This is supported by the fact that the
errors for the finite strip analysis using different mesh refinements will converge uniformly
on a log-log plot as shown in Figure 7.

Figure 6. Definition of sub elements from patch interpolated function.
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Figure 7. Uniform convergence of finite strip error.

As a plot forms a straight line, the gradient between two pairs of points can be calculated
and equated.

grad= (log (o2)− log (o3))/(log (n2)− log (n3))

= (log (o1)− log (o3))/(log (n1)− log (n3)), (15)

log (o2/o3)/log(n2/n3)= log (o1/o3)/log(n1/n3), (16)

(l2 − lEX )/(l3 − lEX ))b =(l1 − lEX )/(l3 − lEX ))g, (17)

where b=log (n1/n3) and g=log (n2/n3). The exact eigenvalue lEX can be solved simply
using numerical techniques with a starting value equal to the eigenvalue having the highest
number of degrees-of-freedom.

5. EXAMPLES

5.1.  1:      

A steel plate of width 100 mm and thickness 1·0 mm was examined for its natural
frequency for a number of lengths of section varying from 10 mm to 1000 mm. The plate
was simply supported along the sides. The minimum natural frequency occurs when the
half wave length of the structure is the largest. Figure 8 is a plot of the natural frequency
versus the half wave length of the structure. The natural frequency has been multiplied

Figure 8. Finite strip results for the simply supported flat plate.
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Figure 9. Finite strip errors for the simply supported flat plate of various lengths for modes 1 and 2. (a) mode
1; (b) mode 2.

by the length of the half wave length to produce a minimum point on the graph associated
with the natural frequency for a square plate. That is, at a length of 100 mm for mode
1 and 50 mm for the double bubble in mode 2. Also on the figure is a sketch of the
displacements of the plate

The plate was examined for a number of mesh refinements and an exact solution was
derived. The errors for each mesh for both modes are plotted in Figure 9. The x-axis
represents the number of degrees of freedom in the models used and the individual lines
represent the error in the finite strip analysis for the various lengths of plate examined.
The improved eigenvalues were calculated using the patch method described in this paper
and using these values an error measure was determined for the finite strip analysis. The
finite strip error, improved eigenvalue error and error measure have been plotted in
Figure 10 for a couple of lengths and for the first two modes. The error for mode 2 is
generally larger than that for mode 1. However, in all cases the improved eigenvalue is
at least an order of magnitude more accurate than the finite strip results. As the improved

Figure 10. Finite strip errors, improved eigenvalue errors and error measures: (a) mode 1, L=50 mm; (b)
mode 2, L=50 mm; (c) mode 1, L=100 mm; (d) mode 2, L=100 mm.
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Figure 11. Dimensions of the three types of channels.

eigenvalue is quite accurate, the error measure for the finite strip solution using this value
predicts accurately the error of the finite strip analysis.

5.2.  2:    

Three channel sections, of the same dimensions as used in reference [3] were examined
using the finite strip method. The dimensions for the channels are given in Figure 11 with
the thickness of the plate being 1·6 mm. These dimensions were also used by Lau and
Hancock [10] for buckling analysis as they produce complex buckling modes that change
from local buckling to distortional buckling to flexural and flexural-torsional buckling. The
modes for the vibration of these sections follow a very similar path to that for the buckling.

The exact eigenvalues have been extrapolated from a number of refined meshes and have
been plotted on the following figure for the first two modes for each of the three channels.
The natural frequencies vary considerably with the length section changes as shown in
Figure 12. This indicates that the section undergoes a variety of vibration modes as the
length changes. These displaced modes are plotted in Figure 13. The shapes are identified
on Figure 12.

Two meshes were examined for the prediction of the finite strip error. For each of these
meshes the first two eigenvalues were examined and the results are shown in Figure 14.
The improved eigenvalue was derived when the original central element was divided into
5 sub-elements. Previous work in reference [3] also used a sub-division of five elements.

Figure 12. Finite strip results for the three channel sections. Letters indicate distorted shape in the following
figure.
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Figure 13. Distorted shapes of the vibrating channels. See previous figure for locations.

The additional time for the computation of the improved eigenvalue using 5 sub-elements
is insignificant and the net result is much better.

The error graphs for the channel with the outward facing lips have not been shown in
Figure 15 as they are virtually of an identical form as the error plots for the channel with
the inward facing lips. The displacements for the vibrating channels in this paper are very
similar to those for the buckling of these channels [3]. Hence, the finite strip errors, the
improved eigenvalue errors and the error measures are virtually identical.

The large jump in each of the figures above around the half wave length of 700 mm,
for the channel without the lips, and around 900 mm for the other channel occurs when
the two modes have the same eigenvalue. From this point the modes swap over for the

Figure 14. Finite strip errors, improved eigenvalue errors and error measures for the first two modes and
different meshes. Channel with no lips: (a) mode 1, 68 d.o.f.; (b) mode 2, 68 d.o.f.; (c) mode 1, 132 d.o.f.; (d)
mode 2, 132 d.o.f.
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Figure 15. Finite strip errors, improved eigenvalue errors and error measures for the first two modes and
different meshes. Channel with inward lips: (a) mode 1, 68 d.o.f.; (b) mode 2, 68 d.o.f.; (c) mode 1, 132 d.o.f.;
(d) mode 2, 132 d.o.f..

lowest eigenvalue, and the natural frequency for the section. Even with such a sharp change
in the figure, the error measure accurately predicts the finite strip error as it does so for
all values of length.

6. CONCLUSION

The patch recovery method for the improved eigenvalue of a finite strip natural
frequency analysis has been demonstrated in this paper to be highly accurate in predicting
the error in the eigenvalue from finite strip analysis, with the improved eigenvalue being
around two orders of magnitude more accurate than the original finite strip solution for
the examples investigated in this paper. The method does not require the resolving of a
finite strip model with a more refined mesh, and can be performed at an element level not
requiring large global matrices to be formed. Hence this method is quite fast producing
accurate results with little computation effort.
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